|国家预印本平台
首页|Logistic回归模型下的一些岭参数性质

Logistic回归模型下的一些岭参数性质

Perfomance of Some Ridge Parameters for the Logisitic Regression

中文摘要英文摘要

这篇文章主要介绍基于极大似然(ML)估计Logistic岭回归(logistic ridge regression)模型(LRR)岭参数k的新方法。运用蒙特卡洛模拟研究分别对这些新参数的均方误差(MSN)、平均值、标准差进行比较模拟的结果显示LRR优于ML理论,并且提出的新的参数k优于kibria et al.2012提出的在实际情况下较合理的参数。

his paper introduces some new different methods for estimating the ridge parameter k for logistic ridge regression (LRR) model by using the maximum likelihood (ML) method. The performance of these new approaches are evaluated and compared through Monte Carlo simulations study along with some other ridge of k in terms of mean square error (MSE), the mean value and the standard deviation, respectively. The results from the simulation study show that LRR outperforms ML approach, and some new proposed ridge estimators outperform those proposed by Kibria et al. 2012which are to be very reasonable alternatives in practice.

黎雅莲、杨成敏

数学

岭参数Logistic回归多重共线性岭回归极大似然估计

Ridge parameterLogistic regressionMulticollinearityRidge regressionMaximum likelihood

黎雅莲,杨成敏.Logistic回归模型下的一些岭参数性质[EB/OL].(2015-01-06)[2025-08-06].http://www.paper.edu.cn/releasepaper/content/201501-79.点此复制

评论