|国家预印本平台
首页|基于机器学习和仿真优化的信贷工厂人员调度系统

基于机器学习和仿真优化的信贷工厂人员调度系统

redit Factory Staff Allocation System Based on Machine Learning and Simulation Optimization

中文摘要英文摘要

针对于信贷工厂中的人员配置问题,提出一个基于机器学习和仿真优化的人员配置问题的系统性解决方案。将汽车贷款审批问题抽象建模为多个排队队列的组合,基于排队论和离散仿真理论搭建起信贷工厂仿真系统。利用prophet时序分析模型去预测信贷订单下一个时段的到达率并输入仿真系统,然后基于贝叶斯优化算法对仿真系统的人员配置方案进行优化。最后再将仿真系统中得到的下一时段的优化后的人员配置方案应用于现实信贷工厂,提高系统的审批效率。结果表明,算法优化后的审批效率相较于随机设置和人为经验调整分别提高了166.7%和38.8%。

systematic solution based on machine learning and simulation optimization is proposed to solve the staff allocation problem in credit factory. Firstly, the credit factory is modeled as a combination of multiple queues, and a credit factory simulation system is built based on queuing theory and discrete simulation theory. Secondly, we use the prophet model to predict the credit order arrival rate of the next period of and input it into the simulation system. Thirdly, based on Bayesian optimization algorithm, we optimize the worker allocation problem of the simulation system. Finally, from the simulation system, we obtain the optimized worker allocation scheme in the next period, and then apply this scheme to the real credit factory. The experimental results show that the approval efficiency of the optimized algorithm is 166.7% and 38.8% higher than that of random setting and human experience adjustment, respectively.

贾宁、黄超琪

财政、金融自动化技术、自动化技术设备计算技术、计算机技术

人员配置贝叶斯优化信贷工厂仿真系统

staff allocationBayesian optimizationcredit factorysimulation system

贾宁,黄超琪.基于机器学习和仿真优化的信贷工厂人员调度系统[EB/OL].(2020-08-19)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/202008-34.点此复制

评论