|国家预印本平台
首页|Maximal subgroups of small index of finite almost simple groups

Maximal subgroups of small index of finite almost simple groups

Maximal subgroups of small index of finite almost simple groups

来源:Arxiv_logoArxiv
英文摘要

We prove in this paper that a finite almost simple group $R$ with socle the non-abelian simple group $S$ possesses a conjugacy class of core-free maximal subgroups whose index coincides with the smallest index $\operatorname{l}(S)$ of a maximal group of $S$ or a conjugacy class of core-free maximal subgroups with a fixed index $v_S \leq {\operatorname{l}(S)^2}$, depending only on $S$. We show that the number of subgroups of the outer automorphism group of $S$ is bounded by $\log^3 {\operatorname{l}(S)}$ and $\operatorname{l}(S)^2 < |S|$.

R. Esteban-Romero、P. Jim¨|nez-Seral、A. Ballester-Bolinches

10.1007/s13398-022-01327-0

数学

R. Esteban-Romero,P. Jim¨|nez-Seral,A. Ballester-Bolinches.Maximal subgroups of small index of finite almost simple groups[EB/OL].(2022-03-31)[2025-08-03].https://arxiv.org/abs/2203.16976.点此复制

评论