Maximal subgroups of small index of finite almost simple groups
Maximal subgroups of small index of finite almost simple groups
We prove in this paper that a finite almost simple group $R$ with socle the non-abelian simple group $S$ possesses a conjugacy class of core-free maximal subgroups whose index coincides with the smallest index $\operatorname{l}(S)$ of a maximal group of $S$ or a conjugacy class of core-free maximal subgroups with a fixed index $v_S \leq {\operatorname{l}(S)^2}$, depending only on $S$. We show that the number of subgroups of the outer automorphism group of $S$ is bounded by $\log^3 {\operatorname{l}(S)}$ and $\operatorname{l}(S)^2 < |S|$.
R. Esteban-Romero、P. Jim¨|nez-Seral、A. Ballester-Bolinches
数学
R. Esteban-Romero,P. Jim¨|nez-Seral,A. Ballester-Bolinches.Maximal subgroups of small index of finite almost simple groups[EB/OL].(2022-03-31)[2025-08-03].https://arxiv.org/abs/2203.16976.点此复制
评论