移动设备上YOLO模型的改进
Real-time Object Detection Based on YOLO on iOS
YOLO是当前最先进的实时物体检测网络之一,可以在计算资源丰富的设备上进行实时物体检测任务,并保证检测结果准确,运行速度快。由于移动设备的计算资源有限以及YOLO需要较多计算资源,所以YOLO现在无法在移动设备上实现准确实时的物体检测。本文主要研究YOLO神经网络的优化,使其在依赖少量计算资源的前提下,保持准确度。最后,本文基于改进后的YOLO在iOS上构建了应用程序,并验证了改进后的YOLO在移动设备上的准确和快速特性。
YOLO is one of the most advanced real-time object detection networks. It can perform real-time object detection tasks on computing resource-rich devices, and ensure accuracy and speed. Because the computing resources of mobile devices are limited and YOLO needs more computing resources, YOLO can not achieve accurate and real-time detection on mobile devices. In this paper, we mainly study the optimization of YOLO neural network to keep its accuracy on the premise of relying on a small amount of computing resources. Finally, based on the improved YOLO, this paper builds an application program on iOS, and verifies the accuracy and fast performance of the improved YOLO on mobile devices.
张紫萱
计算技术、计算机技术电子技术应用自动化技术、自动化技术设备
物体检测YOLO神经网络iOS
object detectionYOLOneural networkiOS
张紫萱.移动设备上YOLO模型的改进[EB/OL].(2019-05-24)[2025-08-03].http://www.paper.edu.cn/releasepaper/content/201905-254.点此复制
评论