移动群智感知中时间窗口相关的参与者选择机制
目前许多移动群智感知应用要求参与者收集一段时间内连续的感知数据,而现有研究在这方面却考虑不足。针对上述应用场景提出了时间窗口相关的参与者选择机制,主要包括基于动态规划算法设计了一种时间窗口相关的参与者选择方法,目标为覆盖任务时间段的同时最大化数据效益;参与者信誉值更新机制,根据参与者参与任务的意愿程度和数据质量更新参与者的信誉值。最后通过仿真实验与两种普遍应用的参与者选择方法比较,实验证明所提出的参与者选择机制在数据可靠性、数据效益和感知成本等方面具有更好的效果,因此所提出的参与者选择机制在时间窗口相关的任务中有更好的应用前景。
In many applications of mobile crowd sensing, participants should collect continuous data over a period of time in this scenario on which existing research lacks consideration. For this scenario, the paper proposes a participant selection mechanism which is time window dependent. This mechanism includes: a participant selection method which is time window dependent based on dynamic programming algorithm. The target of the method is to maximize data benefits while cover time period of the task; A updating mechanism of participants reputation given the willingness and data quality of the participant. Finally, simulation results show that compared with two common selection mechanisms, the participant selection mechanism proposed has better performance in terms of data reliability, data benefits and cost and has better prospects.
张立燊、邢倩、孙学梅
通信无线通信电子技术应用
移动群智感知参与者选择连续数据动态规划
张立燊,邢倩,孙学梅.移动群智感知中时间窗口相关的参与者选择机制[EB/OL].(2018-11-29)[2025-08-11].https://chinaxiv.org/abs/201811.00144.点此复制
评论