利用大气散射模型的图像去雾研究
Image Dehazing Research Using Atmospheric Scattering Model
为了获取清晰的去雾图像,提出一种基于暗原色先验和边界约束的单幅图像去雾算法。首先采用暗原色理论和边界约束理论分别获得天空区域和非天空区域的透射率图像。之后,采用引导滤波对透射率图进行优化处理;然后,采用改进的容差机制对天空区域的透射率做出放大处理。随后结合亮通道理论和暗原色理论得到更精确地大气光值。最后,对于天空区域和非天空区域,分别使用图像融合和直方图均衡的方法增强图像的明亮度。本文从峰值信噪比(PSNR)、均方误差(MSE)和结构相似性(SSIM)三个指标分析实验结果。指标数据表明我们方法的去雾图像失真更小,清晰度更高。
o obtain clear defogging images, a single image dehazing algorithm based on dark channel priori and boundary constraints is proposed. Firstly, for sky region and non-sky region, dark channel prior theory and boundary constraint theory are used to obtain transmission map respectively. Then, guided filtering is used to optimize the transmission map. Later, the improved tolerance mechanism is used to amplify the transmission in the sky region. Next, the precise atmospheric light value is obtained by combining the light channel prior theory and the dark channel prior theory. Finally, for the sky region and non-sky region, image fusion and histogram equalization are used to enhance the image brightness respectively. In this paper, the experimental results are analyzed from three indexes: peak signal to noise ratio(PSNR), mean squared error(MSE) and structural similarity(SSIM). Indicator data show that the dehazing image by our method has less distortion and higher clarity.
阮俊冬、朱宁波
电子技术概论光电子技术计算技术、计算机技术
暗原色先验边界约束引导滤波亮通道先验图像融合容差机制
ark channel priorBoundary constraintGuided filteringLight channel priorImage fusionTolerance mechanism
阮俊冬,朱宁波.利用大气散射模型的图像去雾研究[EB/OL].(2019-04-18)[2025-08-04].http://www.paper.edu.cn/releasepaper/content/201904-209.点此复制
评论