基于树核的中英文语义关系抽取比较
omparison 0n Tree Kernel-based Chinese-English Semantic Relation Extraction
目前在中英文关系抽取研究中,基于核函数的方法取得了较好的性能。而结构化信息的表达方式和产生这些结构化信息的句法分析器对基于核函数的中英文关系抽取至关重要。本文系统地比较了三种常用的结构化信息(最小完全树、最短路径包含树和动态关系树)和三种常用的句法分析器(Stanford、Berkeley和Charniak)对中英文关系抽取性能的影响,并采用近似随机测试技术进行显著性测试,其目的在于从统计学意义上判断不同结构化信息和句法分析器的差异。在英文ACE2004和中文ACE2005语料库上大类关系抽取的实验表明,动态关系树在总体性能上表现最佳,而句法分析器Charniak和Berkeley均优于Stanford。
urrently kernel-based approaches have achieved promising performance for Chinese-English semantic relation extraction. Therefore presentation of structured information and parsers to generate them are crucial to kernel-based Chinese-English semantic relation extraction. This paper systematically compares three kinds of structured information (Minimum Complete Tree, Shortest Path-enclosed Tree, and Dynamic Relation Tree) and three kinds of parsers (Stanford, Berkeley, and Charniak) on the performance of the task of Chinese-English relation extraction. Particularly we employ the approximate random test method for significance tests in order to statistically discern the difference between various kinds of structured information and parsers. The experiments on the ACE 2004 English and ACE 2005 Chinese corpora show that Dynamic Relation Tree performs best and both the Charniak and Berkeley parsers outperform the Stanford parser.
赵知纬、钱龙华、彭成、周国栋
计算技术、计算机技术
关系抽取树核函数结构化信息显著性测试
Relation Extractionree KernelStructured InformationSignificance Test
赵知纬,钱龙华,彭成,周国栋.基于树核的中英文语义关系抽取比较[EB/OL].(2012-01-09)[2025-08-19].http://www.paper.edu.cn/releasepaper/content/201201-260.点此复制
评论