|国家预印本平台
首页|高斯混合声纹识别模型在EM训练中初始值选择问题的研究

高斯混合声纹识别模型在EM训练中初始值选择问题的研究

study on initial value’s selecting question when Gaussian Mixture Speaker Identification Model is trained

中文摘要英文摘要

高斯混合声纹识别模型(Gaussian Mixture Model,简称GMM)是用一组高斯概率密度函数的线性组合来描述的。高斯混合声纹识别系统首先对说话人的语音特征训练进行分类,建立此说话人的初始模型,然后通过EM迭代算法训练出最终优化的模型。EM训练算法是一种极佳算法,初始模型(初始值)的选择对最终识别效果的影响很大。传统地初始值选择一般选用K均值算法,它是一种局部聚类算法,不能为EM算法提供一个最优的初始参数。本文提出了一种与遗传算法相结合的蚁群聚类算法。实验表明:这种算法在高斯混合声纹识别系统上要优于传统K均值算法。

GMM(Gaussian Mixture Model) of voiceprint recognition can be described as linearity combination with a group of PDF(probability density function). First GMM voiceprint system classify feature vectors of an utterance, and establish initial model of the utterance, then we apply the EM(expectation maximization) algorithm to obtain the optimized model .EM algorithm is a local maximization arithmetic, the selection of initial model ,the same meaning of primary parameters, greatly influences the eventual identification effect. Traditionally primary parameters are provided by K-means algorithm, which is a local clustering arithmetic, it cannot supply optimized primary parameters. This paper proposes an ant colony algorithm combined with genetic arithmetic. This algorithm can bring better recognition rate than K-means algorithm in text-dependent GMM voiceprint recognition experiment.

殷海宁

计算技术、计算机技术

声纹识别高斯混合模型遗传算法蚁群聚类算法与遗传算法相结合的蚁群聚类算法

voiceprint recognitionGaussian Mixture Modelgenetic algorithmscolony algorithmant colony algorithm combined with genetic arithmetic

殷海宁.高斯混合声纹识别模型在EM训练中初始值选择问题的研究[EB/OL].(2010-03-19)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201003-630.点此复制

评论