|国家预印本平台
首页|基于Kinect的手势数据库及动静态手势识别算法

基于Kinect的手势数据库及动静态手势识别算法

Kinect-based Hand Gesture Database Kinect-based hand gesture data set and a new dynamic and static hand gestures recognition algorithm

中文摘要英文摘要

基于手势的人机交互以其自然直观性受到了人机交互领域的持续关注,越来越多的手势研究催生了对手势数据库的需求。本文介绍了一个最新的基于彩色深度数据的手势数据库,并提出了一种基于规则的动态及静态手势识别算法。本文首先提出了一个基于Kinect的手势数据库平台(SCUT-DCHG),包括在各种距离条件下,多人次录制的九种静态手势、十三种动态手势,及其交互式的录制平台和两个数据标注工具,便于数据扩展和手部轮廓标注。进一步,基于该数据库,针对动态和静态手势,我们分别提取手势特征,分析手势之间的特点和差异,提出基于规则的快速分类算法。实验数据表明,动静态手势识别综合准确率为95.5%,其中动态和静态手势识别率分别为96.2%和94.4%,充分证明了算法的有效性和可用性。

Hand gesture based computer human interaction has received continuous focuses by researchers. The increasing interests on this field demand a comprehensive hand gesture data set. We introduce a Kinect-based hand gesture data set and a rule-based static and dynamic hand gesture recognition algorithm. The hand gesture data set, named as SCUT-DCHG, includes depth and color sequences of nine static and thirteen dynamic hand gestures performed by multiple persons standing in various distances from Kinect. Moreover, we propose a new real-time rule-based dynamic and static hand gesture recognition algorithm by extracting distinguishable features and classifying them according to various rules. Our experimental results reached 95.5% recognition accuracy for all gestures, specifically 96.2% and 94.4% for dynamic and static hand gesture individually, using SCUT-DCHG data set. The effectiveness of the proposed algorithm is shown.

钱伟、张鑫、安文韬、钟铮扬

计算技术、计算机技术自动化技术、自动化技术设备

模式识别手势数据库手势识别Kinect传感器

pattern recognition gesture data setgesture recognitionKinect sensor

钱伟,张鑫,安文韬,钟铮扬.基于Kinect的手势数据库及动静态手势识别算法[EB/OL].(2015-12-01)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201512-45.点此复制

评论