|国家预印本平台
首页|基于双向RNN和结构性剪枝的高效视频去模糊算法

基于双向RNN和结构性剪枝的高效视频去模糊算法

n Efficient Video Deblurring Algorithm Based on Bidirectional Recurrent Neural Networks and Structured Pruning

中文摘要英文摘要

当前的视频去模糊算法大多对输入进行显对齐,然而模糊视频使用这种对齐方式获取的帧间信息是不准确的,甚至是错误的。这种不准确的对齐结果也就导致了不佳的去模糊效果,因此研究不使用输入显对齐的视频去模糊算法具有重要的学术意义。本论文针对以上问题提出了一种基于双向RNN和结构性剪枝的高效视频去模糊算法,利用RNN的隐状态获取帧间信息并完成对齐融合,并通过重建模块完成清晰帧的重建,同时提出改进的结构化剪枝方法有效减少模型的参数量,从而高效地生成高质的清晰视频帧。大量的对比实验证明了本论文的方法实现了最好的去模糊效果,消融实验则证明了本论文方案的合理性和有效性。

urrent video deblurring algorithms often rely on explicit alignment of the input frames, but such alignment methods can yield inaccurate or even erroneous inter-frame information when dealing with blurry videos. This misalignment leads to suboptimal deblurring results. Therefore, research on video deblurring algorithms that do not require explicit frame alignment holds significant academic value. In this paper, we address the aforementioned issue by proposing an efficient video deblurring algorithm based on Bidirectional Recurrent Neural Networks (RNNs) and structured pruning techniques. Our method leverages the hidden states of RNNs to capture and integrate inter-frame information without explicit alignment, thereby accomplishing motion compensation and fusion. A reconstruction module is further employed to generate sharp frames. Moreover, we introduce an improved structural pruning approach that effectively reduces the model\'s parameter count, thus enabling efficient generation of high-quality clear video frames. Extensive comparative experiments demonstrate that our method achieves state-of-the-art deblurring performance, while ablation studies validate the rationality and effectiveness of the proposed scheme.

李文生、袁帅

计算技术、计算机技术

人工智能去模糊RNN结构性剪枝

artificial intelligencevideodeblurringRNNstructuredpruninginter-frame

李文生,袁帅.基于双向RNN和结构性剪枝的高效视频去模糊算法[EB/OL].(2024-03-21)[2025-08-18].http://www.paper.edu.cn/releasepaper/content/202403-284.点此复制

评论