On the Decidability of Presburger Arithmetic Expanded with Powers
On the Decidability of Presburger Arithmetic Expanded with Powers
We prove that for any integers $α, β> 1$, the existential fragment of the first-order theory of the structure $\langle \mathbb{Z}; 0,1,<, +, α^{\mathbb{N}}, β^{\mathbb{N}}\rangle$ is decidable (where $α^{\mathbb{N}}$ is the set of positive integer powers of $α$, and likewise for $β^{\mathbb{N}}$). On the other hand, we show by way of hardness that decidability of the existential fragment of the theory of $\langle \mathbb{N}; 0,1, <, +, x\mapsto α^x, x \mapsto β^x\rangle$ for any multiplicatively independent $α,β> 1$ would lead to mathematical breakthroughs regarding base-$α$ and base-$β$ expansions of certain transcendental numbers.
Joris Nieuwveld、James Worrell、Joël Ouaknine、Toghrul Karimov、Florian Luca
数学
Joris Nieuwveld,James Worrell,Joël Ouaknine,Toghrul Karimov,Florian Luca.On the Decidability of Presburger Arithmetic Expanded with Powers[EB/OL].(2025-07-20)[2025-08-04].https://arxiv.org/abs/2407.05191.点此复制
评论