相关性反馈技术在三维模型检索中的应用和研究
Evaluation of Relevance Feedback Methods for 3D Shape Retrieval
相关性反馈技术是一种功能强大的检索引擎技术,能弥补高层语义和低层特征的鸿沟。在本文中,我们对现有的应用在三维模型检索中效果最好的5种相关性反馈技术--Elad2001, Space Warping, Linear Discriminant Analysis (LDA), Biased Discriminant Analysis (BDA) and Support Vector Machine (SVM)--进行了综合地比较。为了确保实验过程的可重复性,本论文采用了国际上公认的标准的三维模型库Princeton Shape Benchmark (PSB),以及当前各种性能最佳的三维模型特征描述算子DESIRE。实验结果表明采用了相关性反馈技术的三维模型检索效果有很大的提高,而且SVM技术具有最显著的效果,明显优于BDA算法。
Relevance feedback as a powerful search engine technique bridges the gap between high-level semantic knowledge and low-level object representation. In this paper, we experimentally evaluate 5 state-of-the-art relevance feedback methods: Elad2001, Space Warping, Linear Discriminant Analysis (LDA), Biased Discriminant Analysis (BDA) and Support Vector Machine (SVM). In order to guarantee the experiments reproductive, they are assessed based on the best 3D shape descriptor DESIRE and the publicly available 3D model database Princeton Shape Benchmark (PSB). The experiments show that the retrieval performance of 3D shape search engine may be significantly improved with the application of relevance feedback. In contract to the ambiguous results comparing SVM and BDA from previous paper, SVM was found to outperform BDA with distinct advantage, and they were followed by Elad2001, LDA and Space Warping.
Zheng Qin、冷彪
计算技术、计算机技术
三维模型检索,相关性反馈
3D Shape Retrieval Relevance Feedback
Zheng Qin,冷彪.相关性反馈技术在三维模型检索中的应用和研究[EB/OL].(2008-04-07)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/200804-195.点此复制
评论