基于PCNN的分割图像压缩编码
Segmented Image Compression Coding Based on PCNN
本文提出了一种基于简化脉冲耦合神经网络(PCNN)模型的分割图像编码方法。由于PCNN局部连接域的作用及阈值指数衰减特性,使得具有近似灰度特性的临近像素能够同时处于激活状态,这就构成了PCNN分割特性的基础。通过PCNN模型的各项参数的调整,使得图像分割结果既能较好的包含原始图像细节信息,又能避免一些无意义的小分割块的产生。然后,为了有效的近似各分割区域图像,本文采用施密特正交化方法,从一组线性独立的初始函数构造一组正交基函数。采用该方法,使重建图像的质量得到显著提高,同时也使得逐步重建图像成为可能。
segmented image coding algorithm based on Pulse Coupled Neural Network (PCNN) is presented in this paper. PCNN has the property of local interconnection and changing threshold through which those adjacent pixels that have approximate gray values can be pulsed simultaneously. So PCNN has the foundation of realizing the regional segmentation. And through the adjustment of the parameters of PCNN, segmented images that contain the details of origin can be achieved and at the same time the trivial segmented regions may be avoided. For the better approximation of segmented regions, the Gram-Schmidt method, by which a group of orthogonal base functions is constructed from a group of linear independent initial functions, is adopted. Because of the orthogonal reconstructing method, the quality of reconstructed image can be greatly improved and the progressive image transmission also becomes possible..
史飞、齐春亮、钱志柏、陈娜、马义德
电子技术应用
脉冲耦合神经网络正交基分割图像编码施密特正交化
pulse-coupled neural neworkthe orthonormal basissegmented image codingSchmedit orthonormalization
史飞,齐春亮,钱志柏,陈娜,马义德.基于PCNN的分割图像压缩编码[EB/OL].(2004-12-20)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/200412-57.点此复制
评论