一种基于无人机拍摄视频的人群计数方法
crowd counting method for uav videos
基于无人机拍摄视频的人群计数统计是一个具有挑战性的视觉任务,例如VisDrone2020评测,为提高人群计数网络的性能指标,本文提出通过语义分割滤除建筑物背景干扰的策略。为解决VisDrone-CC2020数据集无语义分割标注的难题,设计实现了一种高效的半自动分割标注方法进行数据标注,微调HRNetv2语义分割网络模型,对于网络输出的语义分割结果,经过形态学处理得到分割完整、边界平滑的语义分割图,用于人群计数网络模型;同时,在人群计数网络中增加光流提取模块以提供目标运动信息。此人群密度预测方案应用于VisDrone-CC2020国际评测,取得评测第九名。
rowd counting based on uav videos is a challenging visual task, such as VisDrone2020 evaluation. To improve the performance of crowd counting network model, we propose a strategy to filter out building interference through semantic segmentation. Since VisDrone-CC2020 training data set does not have segmentation annotations, we present an effective semi-automatic segmentation annotation method, which greatly improves the annotation efficiency of manual labeling. In training phase, the HRNetv2 semantic segmentation network model is fine-tuned based on our labeling data. In testing phase, HRNetV2 network output is processed by morphological algorithms, and we get a building segmentation map with complete and smooth boundary for each scene in VisDrone-CC2020 test dataset. Then the building segmentation map is applied to our trained model to filter out building interference. At the same time, an optical flow extraction module is added in the crowd counting network to provide target motion information. This crowd density prediction scheme was applied to visdrone-CC2020 international evaluation, and ranked ninth in the evaluation.
赵衍运、刘诗动
航空航天技术自动化技术、自动化技术设备遥感技术
无人机拍摄视频智能分析人群计数语义分割深度学习
intelligent analysis of uav videocrowd countingsemantic segmentationdeep learning
赵衍运,刘诗动.一种基于无人机拍摄视频的人群计数方法[EB/OL].(2021-11-29)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/202111-78.点此复制
评论