|国家预印本平台
首页|基于Adaboost的人脸跟踪模型

基于Adaboost的人脸跟踪模型

Face Tracking Model Based on Adaboost

中文摘要英文摘要

这篇文章基于Adaboost模型提出了一个嵌入试平台上的快速视频人脸跟踪模型,并给出了在ARM7处理器上的测试结果。该模型在Adaboost模型的基础上增加了两个强分类器,分别是区域检测单元和肤色过滤单元。区域检测单元综合之前的检测结果,判断输入到模型中的检测区域是否有出现人脸的可能性,滤除系统认为不应该出现人脸的区域以及检测尺寸太大或者太小的区域;肤色过滤单元判断图像的检测区域是否符合肤色的特征,滤除不是肤色的区域。通过这两个检测单元,才会进行后续的检测。系统需要对每一帧图像进行预处理,才能输入到检测模型。预处理包括颜色空间变换、灰度图像计算、肤色积分图计算、灰度积分图计算等。通过实验表明,新的检测单元的加入不仅提高了人脸检测的速度,还大大降低了传统Adaboost模型检测的错误率,检测效果十分理想。

his paper proposed a fast video face tracking model of embedded platform, and the test results on the ARM7 processor is also given. This model increases two strong classifiers on the basis of the Adaboost model, which is regional detecting unit (RDU) and skin colour filtering unit (SCFU) respectively. With the previous detecting results, the RDU estimates whether the detecting area contains face, and whether the size of the detecting area is appropriate, only the detecting areas that are passed by RDU will be input to the SCFU. The SCFU does colour space transformation for every frame image, figuring out whether the detection area contains enough pixels of skin. And then, dose face detection with Adaboost model. Experiments show that the skin colour detection not only accelerated the face detection, but also greatly reduces the error rate of the Adaboost model. The requirements of computing speed of the SCFU is pretty low, but the detection speed is ideal, so it's very suitable for embedded system.

卞佳丽、赵成帅

电子技术应用

计算机应用技术daboost肤色人脸跟踪嵌入式

computer application technologyAdaboostcolour of skinface trackingembedded

卞佳丽,赵成帅.基于Adaboost的人脸跟踪模型[EB/OL].(2016-12-30)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/201612-635.点此复制

评论