|国家预印本平台
首页|求解TSP问题的一种改进蚁群算法

求解TSP问题的一种改进蚁群算法

n improved ant colony algorithm for solving TSP

中文摘要英文摘要

SP问题是典型的NP-hard组合优化问题,用蚁群算法求解此问题存在搜索时间长,容易陷入局部最优解的不足。本文提出了一种改进的蚁群算法。该算法在蚁群算法中植入遗传算法,利用遗传算法生成信息素的分布,克服了蚁群算法中搜索时间长的缺陷。此外,在蚁群算法寻优中,采用交叉和变异的策略,改善了TSP解的质量。仿真结果显示,改进的蚁群算法是有效的。

SP is a classical NP-hard combinatorial optimization. Some drawbacks such as long time searching and fall into local optimal solution are shown with ant colony algorithm is used for solving this problem. As a result, this paper presents an optimized algorithm for solving TSP. The proposed algorithm combines the ant colony algorithm and genetic algorithm, which uses GA to generate the distribution of pheromone.In addition,in the Ant colony algorithm,we use the crossover and mutation strategies to improve the quality of TSP solution. The simulation result shows that the improved algorithm optimizes the TSP in time and performance.

王峰峰 、王仁明、伍佳

计算技术、计算机技术

蚁群算法遗传算法SP问题

nt colony algorithmGenetic AlgorithmSP optimization

王峰峰 ,王仁明,伍佳.求解TSP问题的一种改进蚁群算法[EB/OL].(2010-04-21)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/201004-780.点此复制

评论