|国家预印本平台
首页|融合IMU去除运动模糊的改进光流匹配算法

融合IMU去除运动模糊的改进光流匹配算法

中文摘要英文摘要

为进一步提高视觉SLAM中的光流匹配精度和速度,提出一种融合惯性测量单元(Inertial Measurement Unit,IMU)去除运动模糊的改进光流匹配算法。该算法首先利用IMU运动信息计算的点扩散函数去除运动模糊,提高特征点匹配率;其次在LK(Lucas-Kanade)光流的基础上,引入梯度误差,并使用图像梯度L1范数作为正则项模拟稀疏噪声,构建代价函数;然后利用IMU预测特征点位置作为该算法初始值,并加入BB(Barzilar-Borwein)步长改进原有的高斯牛顿算法,提高计算速度。实验表明,通过两帧之间比较,该算法的效率和精度均优于LK光流法;然后将该算法集成到VINS-Mono框架,在数据集EuRoC上,结果显示该算法提高了原有框架的定位精度和鲁棒性。

In order to improve the accuracy and efficiency of the feature point matching, this paper proposed a novel feature point matching algorithm in terms of vision and inertial measurement unit (IMU) fusion. Firstly, the algorithm calculated the point diffusion function using the motion information of IMU to remove motion blur, and improved the feature point matching rate. Secondly, based on LK (Lucas-Kanade) optical flow method, this paper introduced gradient error and uses L1 parametric to simulate sparse noise. Furthermore, the feature point position by using IMU is the initial value of the algorithm, and then this paper used BB (Barzilar-Borwein) step to improve the efficiency of the algorithm. Finally, the comparison experiments show that the efficiency and accuracy of the algorithm are better than the LK optical flow method. Especially, the algorithm improves the localization accuracy and robustness of the VINS-Mono framework on the dataset EuRoC.

魏国亮、蔡洁、栾小珍

10.12074/202205.00070V1

航空航天技术自动化技术、自动化技术设备电子技术应用

光流法前端视觉里程计运动模糊多传感器融合

魏国亮,蔡洁,栾小珍.融合IMU去除运动模糊的改进光流匹配算法[EB/OL].(2022-05-10)[2025-08-10].https://chinaxiv.org/abs/202205.00070.点此复制

评论