保极值原理的中心间断Galerkin方法
Maximum-principle-satisfying central discontinuous Galerkin method
利用数值方法求解守恒律方程时,数值解不能违背物理性质,应该满足极值原理。本文的主要工作是构造满足极值原理的高阶中心间断Galerkin法,对必要的理论结果进行证明。最后,通过计算一些数值算例检验了方法的有效性和精确度。
For numerical schemes solving scalar conservation laws, the maximum principle is a desired property since violating it might be physically meaningless. We propose a high order maximum-principle-satisfying central discontinuous Galerkin method. Essential theoretical results will be discussed, and the performance of the proposed methods will be demonstrated through a set of numerical experiments.
李茂军、李珍
数学
双曲型守恒律中心间断Galerkin法极值原理
hyperbolic conservation lawscentral discontinuous Galerkin methodmaximum principle
李茂军,李珍.保极值原理的中心间断Galerkin方法[EB/OL].(2015-02-06)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/201502-76.点此复制
评论