|国家预印本平台
首页|The moduli space of embedded singly periodic maximal surfaces with isolated singularities in the Lorentz-Minkowski space $\l^3$

The moduli space of embedded singly periodic maximal surfaces with isolated singularities in the Lorentz-Minkowski space $\l^3$

The moduli space of embedded singly periodic maximal surfaces with isolated singularities in the Lorentz-Minkowski space $\l^3$

来源:Arxiv_logoArxiv
英文摘要

We show that, up to some natural normalizations, the moduli space of singly periodic complete embedded maximal surfaces in the Lorentz-Minkowski space $\l^3=(\r^3,dx_1^2+dx_2^2-dx_3^2),$ with fundamental piece having a finite number $(n+1)$ of singularities, is a real analytic manifold of dimension $3n+4.$ The underlying topology agrees with the topology of uniform convergence of graphs on compact subsets of $\{x_3=0\}.$

Rabah Souam、Francisco J. Lopez、Isabel Fernandez

数学

Rabah Souam,Francisco J. Lopez,Isabel Fernandez.The moduli space of embedded singly periodic maximal surfaces with isolated singularities in the Lorentz-Minkowski space $\l^3$[EB/OL].(2004-12-09)[2025-08-17].https://arxiv.org/abs/math/0412190.点此复制

评论