|国家预印本平台
首页|集合转换卡尔曼滤波同化的一种改进

集合转换卡尔曼滤波同化的一种改进

Improvement in assimilation of ensemble transform Kalman filter

中文摘要英文摘要

集合转换卡尔曼滤波在处理非线性观测资料的同化时,通常对非线性观测算子做简单的线性化处理,这会带来更大的舍入误差,降低同化效果。通过对状态变量和观测变量的转换,将观测算子视为预报算子的一部分,对传统的同化算法进行改进,减小了同化中的误差。以典型的Lorenz-96预报模型来验证算法,对于较大模型误差或较强非线性观测算子的情形,结果好于传统的方法。

he assimilation of Ensemble Transform Kalman Filter (ETKF) in processing nonlinear observation data has to simply linearize the nonlinear observations, which results in large error and low accuracy. The nonlinear observation operator is treated as a part of the forecast operator through the conversion of the state vector and observation vector. Such improvement to conventional assimilation calculation effectively reduces the assimilative error. The assimilation results of Lorenz-96 experiments show that the analysis error is reduced in the new scheme and the assimilation accuracy is improved, especially for the cases of the forecast model with large error or strongly nonlinear observation operator.

吴国灿、郑小谷

自动化基础理论计算技术、计算机技术

数据同化集合转换卡尔曼滤波非线性观测算子预报误差

data assimilationensemble transform Kalman filter (ETKF)nonlinear observation operatorforecast error

吴国灿,郑小谷.集合转换卡尔曼滤波同化的一种改进[EB/OL].(2015-03-31)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/201503-422.点此复制

评论