定常不可压缩磁流体方程组丰富多尺度稳定化有限体积算法研究
he multiscale enrichment finite volumemethod for the stationary incompressible magnetohydrodynamics flow
本文基于三角形网格上的最低阶混合有限元对考虑求解定常不可压缩磁流体方程组的有限体积方法。在这里使用线性多项式来近似速度和磁场,使用分段常数来近似压力。为了克服离散的inf-sup 条件的限制,本文采取了丰富多尺度的稳定化方法。首先,利用不动点定理建立了数值解的存在唯一性和稳定性。然后,给出了H1 和L2 范数下数值解的最优误差估计。最后,数值结果验证了所建立的理论结果,并证明了所考虑的数值格式的性能。
In the paper, the finite volume method for the steady incompressible magnetohydrodynamics(MHD) problem based on the lowest order mixed finite element pair on triangular mesh is considered, the linear polynomial is used to approximate the velocity and magnetic fields and the piecewise constant is adopted to approximate the pressure. In order to overcome the restriction of discrete inf-sup (LBB) condition, the multiscale enrichment method is employed. Firstly, the existence, uniqueness and stability of numerical solutions are established through the fixed point theorem. Then, the optimal error estimates of numerical solutions in H1 and L2-norms are presented. Finally, some numerical results are provided to verify the established theoretical findings and show the performances of considered numerical scheme.
陈传军、张通、沈孝荣
电工基础理论数学力学
计算数学不可压缩磁流体方程有限体积方法丰富多尺度方法稳定性误差估计
omputational mathematicsfinite volume methodmultiscale enrichment methodmagnetohydrodynamics ?owstabilityerror estimates.
陈传军,张通,沈孝荣.定常不可压缩磁流体方程组丰富多尺度稳定化有限体积算法研究[EB/OL].(2023-04-18)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/202304-264.点此复制
评论