|国家预印本平台
首页|基于节点综合相似度的多标签传播社区划分算法

基于节点综合相似度的多标签传播社区划分算法

中文摘要英文摘要

为了解决现有的多标签传播社区划分算法采用的随机顺序策略导致形成的社区划分结果不稳定和社区质量不够高的问题,提出了一种基于节点综合相似度的多标签传播社区划分算法MLPA-NCS。以节点潜在影响力的降序作为节点选择顺序,解决社区结果划分不稳定问题。根据节点的主题相似度和链接相关度计算出节点综合相似度,并以节点综合相似度降序作为更新节点标签时对邻近节点遍历的顺序,提高所划分社区的质量。采用真实数据集和人工网络数据,对多个算法进行对比实验,结果表明算法有效可行,社区划分结果更稳定,社区质量也更高。

o solve the problem that recent research about multi label propagation community division algorithm adopted the random sequence strategy to result in unstable result of community division and poor community quality, this paper proposed a Multi-label Propagation Algorithm Based on the Node Comprehensive Similarity (MLPA-NCS) for community division. This paper chose the descending order of node potential impact as the node selection order in order to solve the problem of the instability of the propagation. Node synthesis similarity could be calculated based on the theme of node similarity and link correlation, and its descending order was used as the order of neighboring nodes traversal when updating the node label to improve the quality of the communities found. This paper used real data sets and artificial network data to compare the results of several algorithms. The results show that the algorithm is effective and feasible and able to make the result of community division more stable while the quality of community more effectively.

施化吉、郝梓琳、李雷

10.12074/201804.01438V1

计算技术、计算机技术

社区划分标签传播重叠社区综合相似度主题相似度

施化吉,郝梓琳,李雷.基于节点综合相似度的多标签传播社区划分算法[EB/OL].(2018-04-12)[2025-08-16].https://chinaxiv.org/abs/201804.01438.点此复制

评论