|国家预印本平台
首页|基于自建数据集的比较研究与神经网络实现

基于自建数据集的比较研究与神经网络实现

omparative research and neural network implementation based on self-built datasets

中文摘要英文摘要

随着人工智能技术的发展,模式识别作为其中一个重要应用在国内外得到了飞速发展。而模糊模式识别是其中一种基于模糊集理论的方法,可以应用于图像分类、人脸识别、细胞识别等领域。在模糊模式识别中,三角形识别是最为基础的图形识别,也是细胞识别领域中染色体形状分类、白血球分类等实际应用问题中的重要一环。然而,在三角形模糊模式识别中,缺乏可供使用的数据集来验证各种识别方法的准确率。因此,本文建立了一个三角形模糊模式识别的数据集,包括三角形的角度和被识别的种类,以用于检验传统识别方法、崔湘军提出的识别方法、孙晶提出的识别方法及神经网络模型的准确率。通过实验结果,展示了该数据集在三角形模糊模式识别中的应用价值。

With the development of artificial intelligence technology, pattern recognition as one of the important applications has been rapidly developed at home and abroad. Fuzzy pattern recognition is one of the methods based on fuzzy set theory, which can be applied to image classification, face recognition, cell recognition and other fields. In fuzzy pattern recognition, triangle recognition is the most basic pattern recognition, and it is also an important part of practical application problems such as chromosome shape classification and white blood cell classification in the field of cell recognition. However, in triangle fuzzy pattern recognition, there is a lack of datasets available to verify the accuracy of various recognition methods. Therefore, this paper establishes a dataset for triangle fuzzy pattern recognition, including the angle of triangle and the type of identification, to test the accuracy of traditional recognition methods, the recognition method proposed by Cui Xiangjun, the recognition method proposed by Sun Jing and the neural network model. Through experimental results, the application value of this dataset in triangle fuzzy pattern recognition is displayed.

徐兴国、张春旺、冀彦哲、刘海涛

生物科学研究方法、生物科学研究技术计算技术、计算机技术

模糊模式识别三角形识别神经网络数据集准确率

fuzzy pattern recognitiontriangle recognitionneural networkdata setaccuracy

徐兴国,张春旺,冀彦哲,刘海涛.基于自建数据集的比较研究与神经网络实现[EB/OL].(2023-04-25)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/202304-337.点此复制

评论