|国家预印本平台
首页|基于神经网络安全评价模型

基于神经网络安全评价模型

Based on neural network security evaluation model

中文摘要英文摘要

人工神经网络具有很强的自组织性和学习性,通过输入样本的学习,将知识表示为数值模型。本文阐述了人工神经网络基本原理和几种典型的网络模型,研究分析了BP神经网络模型的特点并提出了具体的优化策略。在此基础上,将神经网络理论应用于系统安全评价之中,通过选取反映企业安全状态和安全条件的6个安全评价参数作为学习样本,由此提出了基于此理论的系统安全评价模型、实现方法和优点;评价实例证明此方法的可行性。

rtificial Neural Networks has a strong self-organizing and learning, by entering the study sample, the knowledge that for the numerical model. This article describes the basic principles of artificial neural networks and several typical network model, the BP analysis of the characteristics of neural network models and put forward specific optimization strategy. On this basis, the neural network theory applied to evaluate the security system, selected to reflect the adoption of a state enterprise security and safety conditions of 6 parameters as a safety assessment study samples, which based on the theory of system security evaluation model to achieve Methods and advantages; evaluation of examples to prove the feasibility of this method.

韩亚

安全科学自动化基础理论计算技术、计算机技术

神经网络网络优化安全评价

Neural NetworkNetwork OptimizationSafety Assessment

韩亚.基于神经网络安全评价模型[EB/OL].(2008-12-29)[2025-08-22].http://www.paper.edu.cn/releasepaper/content/200812-901.点此复制

评论