入侵检测中支持向量机参数选择方法研究
Method for selecting the parameters of support vector machines in intrusion detection
针对支持向量机入侵检测系统的参数选择问题,研究了支持向量机入侵检测分类器的构造方法及参数变化对支持向量机性能的影响,提出一种新的支持向量机参数快速选择的方法,并给出参数选择的过程。对KDD Cup 99网络入侵检测数据集进行仿真实验,实验结果表明该方法能够快速构造支持向量机入侵检测分类器模型,同时对入侵行为具有较高的检测精度。
In order to construct an intrusion detection classifier based on support vector machines (SVM) that has good learning and generalization ability, the construction of the SVM classifier and the effect of SVM parameter are discussed. A new method for quickly selecting the parameters of SVM is presented. And the steps of the SVM parameters selecting are given. Experiments on KDD Cup 99 network intrusion detection dataset indicate that the proposed method can speed up the process of constructing an intrusion detection classifier and the detection accuracy for intrusion is higher.
周玖玖、康松林
计算技术、计算机技术
入侵检测支持向量机惩罚因子核参数参数选择
intrusion detectionsupport vector machinespenalty factorKernel parameterparameters selecting
周玖玖,康松林.入侵检测中支持向量机参数选择方法研究[EB/OL].(2012-04-09)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/201204-91.点此复制
评论