等周不等式的最优传输研究
Study on Optimal transport of isoperimetric inequalities
等周不等式是数学中最重要的几何不等式之一, 具有悠久的历史和广泛的应用. Gromov 于1986 年利用最优传输理论得到了等周不等式的一个简洁证明, 后来Figalli-Maggi-Pratelli 利用最优传输理论研究等周不等式的稳定性. 受Figalli-Maggi-Pratelli 工作的启发, 本文利用Alzer 的算术-几何平均不等式, 优化了Figalli-Maggi-Pratelli 证明的各向异性等周不等式稳定性估计中的参数, 并将所得结论应用于Brunn-Minkowski 不等式, 优化了凸集体积相等情况下Brunn-Minkowski 不等式的稳定性估计的参数. 随后, 将该方法应用于Urysohn 不等式的稳定性估计中, 得到了Urysohn 不等式的稳定性估计.
Isoperimetric inequality is one of the most important geometric inequalities in mathematics, which has a long history and wide application. Gromov obtained a concise proof of isoperimetric inequality in 1986 by using optimal transport theory. Later Figalli-Maggi-Pratelli studied the stability of isoperimetric inequalities by using the optimal transport theory. Inspired by Figalli-Maggi-Pratelli's work, this paper uses Alzer's arithmetic-geometric mean inequality to optimize the parameters in the stability estimation of anisotropic isoperimetric inequality proved by Figalli-Maggi-Pratelli. The results are applied to Brunn-Minkowski inequality, and the parameters of stability estimation of Brunn-Minkowski inequality for convex collective product equality are optimized. Then, the method is applied to the stability estimation of Urysohn's inequality, and the stability estimation of Urysohn's inequality is obtained.
黄勇、焦安康
数学
等周不等式最优传输Brunn-Minkowski 不等式Urysohn 不等式.
he isoperimetric inequalityThe optimal transportBrunn-Minkowski inequalityUrysohn’s inequality
黄勇,焦安康.等周不等式的最优传输研究[EB/OL].(2023-03-03)[2025-06-14].http://www.paper.edu.cn/releasepaper/content/202303-40.点此复制
评论