|国家预印本平台
首页|BP神经网络预测河流月径流量

BP神经网络预测河流月径流量

Prediction of monthly runoff basing on BP neural network

中文摘要英文摘要

河流的月径流量是随机变化的,影响因素很多,如人类活动、降雨、下垫面的土壤、植被覆盖情况。利用人工神经网络理论建立BP(Back-Propagation,反向传播方法)网络预测模型,用该模型对河流的月径流量进行预测,BP神经网络模型计算快速, 占用内存小, 还有很好的容错性,可以得到比较理想的结果,精度高,可靠性好。模型建立之后,将其用于实例,通过对大量样本进行很多次的训练学习,得到训练好的BP网络模型,最后进行预测,得到令人比较满意的结果。

he monthly runoff changes randomly and there are a lot of influence ingredients, for example human activities, rainfall, the soil and plant conditions on the ground. Set up BP neural network basing on the theory of artificial neural network, and then use this BP neural network to predict the every-month runoff can get good results, whereas the BP neural network model can give the result quickly, and it’s precise and credible. We use the model to predict. First, use a large mount of samples to practice the BP neural network model. After such training, we utilize this model to predict the monthly runoff, finally get a satisfied result.

胡宾、崔广柏

自动化技术、自动化技术设备计算技术、计算机技术水利工程基础科学

月径流量 BP人工神经网络 预测

monthly runoff BP neural network predict

胡宾,崔广柏.BP神经网络预测河流月径流量[EB/OL].(2006-11-17)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/200611-479.点此复制

评论