|国家预印本平台
首页|基于语义位置和区域划分的兴趣点推荐模型

基于语义位置和区域划分的兴趣点推荐模型

中文摘要英文摘要

针对现有的位置社交网络研究工作对兴趣点相关的用户语义位置信息挖掘不够充分,且大多推荐算法忽略了兴趣点所在区域对推荐结果的影响,提出了一种新型兴趣点推荐模型(USTTGD)。首先采用分割时间的潜在狄利克雷分配主题模型(latent Dirichlet allocation,LDA),基于签到记录中的语义位置信息挖掘时间主题下的用户时间偏好,然后将兴趣点所处区域划分为网格,以评估区域影响;接着应用边缘加权的个性化PageRank (Edge-weighted Personalized PageRank,EwPPR)来建模兴趣点之间的连续过渡;最后将用户时间偏好、区域偏好和连续过渡偏好融合为一个统一的推荐框架。通过在真实数据集上实验验证,与其他传统推荐模型相比,USTTGD模型在准确率和召回率上有了显著的提升。

ccording to the existing research work of location-based social network was not sufficient to mine the user semantic location information related to point-of-interest, Moreover, most recommendation algorithms ignored the influence of the region of point-of-interest on the result of recommendation. This paper proposed a new recommendation model of point-of-interest called USTTGD, first adopted the Latent Dirichlet Allocation(LDA) topic model of time division, based on the semantic location information in check-in records mined the user time preference under the time theme, then devided the region of point-of-interest into grids to evaluate the regional influence. Next, applied Edge-weighted Personalized PageRank(EwPPR) to modeling the successive transitions among point-of-interests. Finally, USTTGD fused user time preference, regional preference and successive transition preference into a unified recommendation framework. Experimental results on real-world datasets show that USTTGD achieves significantly enhance compared with other classical recommendation models on precision and recalling rates.

万程峰、吴晓浩、刘辉

10.12074/201812.00100V1

计算技术、计算机技术

位置社交网络语义位置兴趣点推荐时间主题区域影响

万程峰,吴晓浩,刘辉.基于语义位置和区域划分的兴趣点推荐模型[EB/OL].(2018-12-13)[2025-08-18].https://chinaxiv.org/abs/201812.00100.点此复制

评论