|国家预印本平台
首页|一种基于BP神经网络的压缩机状态预测方法

一种基于BP神经网络的压缩机状态预测方法

One Method of Compressor Performance Prediction Based on Error Back-propagation Artificial Neural Network

中文摘要英文摘要

本文建立了智能状态预测模型,提出采用BP网络预测模型对压缩机热力学参数进行状态监测研究,并在某压缩机运行现场进行了模型验证与应用。计算实例显示,网络的预测效果与训练效果吻合较好,训练代价适中,所建模型可用于压缩机全年运行的性能预测与故障诊断中。为压缩机的状态监测提供了一种新的方法途径。

Intelligent condition forecasting models of compressors are built. After analysis of their characteristics, this dissertation brings forward the method of adopting BP network forecasting model to monitor thermodynamics parameters of compressors. This model is tested and applied in a compressor running field. The modeling results indicate that the model can be used in the performance prediction and fault diagnosis of the compressor. The method provides a new way for monitoring compressors condition.

唐富勇、丁海涛

气体压缩、气体压缩机械热工量测、热工自动控制自动化技术、自动化技术设备

压缩机BP网络状态预测

compressorsback-propagationcondition prediction

唐富勇,丁海涛.一种基于BP神经网络的压缩机状态预测方法[EB/OL].(2008-05-28)[2025-08-06].http://www.paper.edu.cn/releasepaper/content/200805-819.点此复制

评论