基于组合双密度复小波变换和双变量模型的图像去噪算法
Image Denoising Using Double-Density Complex Wavelet Transform and Bivariate Model
本文提出一种基于组合双密度复小波变换和双变量模型的图像去噪算法。首先采用双密度复小波分解噪声图像,将其变换系数按规则重新排列组合,能有效突出图像边缘信息,然后引入贝叶斯最大后验估计理论下的双变量模型,充分挖掘其系数尺度内和尺度间的双重相关性,有效地提高了图像去噪效果。仿真实验表明,去噪后图像不但去除了常见的伪吉布斯现象,而且与当前一些图像去噪算法相比较,其客观评价指标PSNR以及去噪后图像的主观视觉效果都有明显的提高和改善,且有效地保留了原始图像的纹理和细节信息。
his paper proposes a new image denoising method based on the permuted Double-Density Complex Wavelet Transform and the Bivariate model. The proposed algorithm get the decomposition coefficients useing the Double-Density Complex Wavelet Transform first, and permute the coefficients which can stress the edge informations of images. The Bivariate model under the framework of Bayesian MAP estimation theory can exploit the intra-scale and inter-scale correlations of coefficients, and it improved the effect of image denoising. Compared with some current outstanding denoising methods, the simulation results and analysis show that the proposed algorithm removes Gibbs-like phenomenon, and obviously outperformes in both Peak Signal-to-Noise Ratio(PSNR) and visual quality,and effectively preserves detail and texture information of original images.
马尚君、庞庆堃、李剑、袁博、尚赵伟、郎方年
计算技术、计算机技术
图像降噪双密度复小波贝叶斯估计双变量模型
Image Denoisingouble-Density Complex Wavelet TransformBayesian estimationBivariate model
马尚君,庞庆堃,李剑,袁博,尚赵伟,郎方年.基于组合双密度复小波变换和双变量模型的图像去噪算法[EB/OL].(2009-10-23)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/200910-465.点此复制
评论