|国家预印本平台
首页|基于张量分解的异构隐式反馈推荐算法研究

基于张量分解的异构隐式反馈推荐算法研究

tensor-based recommendation algorithm using heterogeneous implicit feedback

中文摘要英文摘要

在大多数基于隐式反馈的推荐算法中,由于仅利用很少的辅助反馈则导致在数据稀疏情况下推荐不准确。 然而,用户在电子商务网站中的不同行为,例如点击,加入购物车,购买等,可以为推荐系统提供额外的具有潜力和价值的信息。 为了充分利用这些行为,本文提出了一种基于张量分解的推荐算法,该算法使用异构隐式反馈数据。该方案揭露了用户,项目和活动之间的依赖性,并打破了用户-物品矩阵的局限。 此外,它还将社会信息作为正则项,以获得用户与其朋友之间的信任关系。 在真实数据集上的实验结果表明,我们提出的算法优于其他比较方法,有效地提高了推荐系统的性能。

Most of implicit feedback based recommendation algorithms only utilize little auxiliary feedback, which leads to the inaccuracy recommendation in data sparsity. However, several user actions on e-commerce, such as click, wanted, purchased, can provide extra potential and valuable information for recommender systems. To make full use of these actions, this paper proposes a tensor-based recommendation algorithm using heterogeneous implicit feedback. This scheme exposes the hidden dependency among users, items and actions and breaks the limitation of user-item matrix. Moreover, it also considers the social information as regularization term to obtain trust relationship between users and their friends. The experimental results on a real dataset show our proposed algorithm outperforms other compared methods, and improving the performance of recommender system effectively

张文颖、李汶华

计算技术、计算机技术

推荐系统异构隐式反馈张量分解社交正则数据稀疏性

recommender systemhetergeneous implicit feedbacktensor-basedsocial regularizatondata sparsity

张文颖,李汶华.基于张量分解的异构隐式反馈推荐算法研究[EB/OL].(2019-03-11)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201903-101.点此复制

评论