|国家预印本平台
首页|基于支持向量机的虹膜识别方法研究

基于支持向量机的虹膜识别方法研究

Study on Iris Recognition Method Based on Support Vector Machine

中文摘要英文摘要

为了提高虹膜识别的准确性和稳定性,本文研究了统计学习理论的支持向量机学习算法,在该研究的基础上,将二维分类问题扩展到虹膜特征的多维空间,提出了基于支持向量机的虹膜识别方法.该方法应用支持向量机的径向基函数映射,将虹膜特征映射到高维空间,实现了虹膜特征的多维分类问题.通过在CASIA虹膜图像库的实验验证,本文方法较最近特征线方法和相异度函数方法分别提高了3.83%和5.76%的识别率,同时支持向量机的核化性能增强了识别算法的稳定性和灵活性.

In order to improve accuracy and stability for iris recognition, this paper studied support vector machine(SVM) learning algorithm based on statistical learning theory and expanded two-dimension iris feature to multi-dimension situation for multi-dimension iris feature. Then, based on the performance of SVM in tackling small sample size, high dimension and its good generation, the paper proposed an iris recognition method based on SVM. The method realized to map iris features to high dimension space using radial based function. The CASIA iris database was used to test the proposed method. The experimental results show that comparing with the nearest feature line method and dissimilarity functions, recognition rated of the proposed method is increased 3.83% and 5.76% respectively, while improving the stability and flexibility of iris recognition for kernelization of SVM.

王勇

计算技术、计算机技术

虹膜识别统计学习理论支持向量机

Iris recognitionStatistical learning theorySupport vector machine

王勇.基于支持向量机的虹膜识别方法研究[EB/OL].(2012-02-29)[2025-08-21].http://www.paper.edu.cn/releasepaper/content/201202-1129.点此复制

评论