一种改进的随机微粒群算法(GCSPSO)
Improved Stochastic Particle Swarm Optimization Algorithm
以保证全局收敛的随机微粒群算法SPSO 为基础,本文提出了一种改进的随机微粒群算法———GCSPSO。该方法是在SPSO 的进化过程中,嵌入确定性搜索方法,并且每个微粒所共享的社会信息随距离扩散。这样既可以加快收敛速度,又可以保持群体多样性。通过对两个多峰的测试函数进行仿真,其结果表明:GCSPSO 算法不仅具有较快的收敛速度, 而且能够更有效地进行全局搜索。
Based on the stochastic particle swarm optimization algorithm that guarantees global convergence,an improved stochastic particle swarm optimization algorithm named GCSPSO is proposed. During the evolution of SPSO ,the certain search method is imbedded ,the social information that is shared by every particle proliferate with distance. Thus , the convergence is speed up and the population diversity is kept.Through the experiments of two multimodal test functions,the result of simulation proves that the GCSPSO can not only significantly speed up the convergence,but also effectively solve the premature convergence problem.
黄孝伦、魏志华
计算技术、计算机技术
随机微粒群算法社会信息全局优化
stochastic particle swarm optimizationsocial informationglobal optimization
黄孝伦,魏志华.一种改进的随机微粒群算法(GCSPSO)[EB/OL].(2007-06-18)[2025-08-10].http://www.paper.edu.cn/releasepaper/content/200706-349.点此复制
评论