交通冲突量的BP神经网络预测方法
BP Neural Networks for traffic conflicts forecasting
本文给出了一种用神经网络预测交通冲突的方法。交通冲突预测是进行交通事故预防和制定安全改善措施的有效手段之一,节约观测时间和人力。针对BP网络的缺点,提出了改进的快速BP算法,建立了交通冲突量的BP神经网络预测方法,并应用该方法对具体的交叉口交通冲突量的预测实例进行了研究,结果是满意的,从而验证了该方法的有效性。研究表明交通冲突量的BP神经网络预测方法是交通冲突量预测的有效方法。
raffic conflicts forecasting can support preventing accidents and safety improving, and it can save observation time and manpower. Firstly, it gives improved algorithm based on BP Neural Networks. Then the model is established for traffic conflicts forecasting based on BP Neural Networks. At last, it gives a through study on an example using above BP Neural Networks forecasting method. The result validates the method is in availability. The method will be a powerful tool for traffic conflicts forecasting and safety estimating.
李江、席建锋、矫成武 、李华成
公路运输工程
交通冲突BP神经网络改进算法预测
raffic conflictBP Neural NetworksImproved algorithmForecasting
李江,席建锋,矫成武 ,李华成.交通冲突量的BP神经网络预测方法[EB/OL].(2006-05-19)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/200605-219.点此复制
评论