Generalized rainbow Tur\'an numbers of odd cycles
Generalized rainbow Tur\'an numbers of odd cycles
Given graphs $F$ and $H$, the generalized rainbow Tur\'an number $\text{ex}(n,F,\text{rainbow-}H)$ is the maximum number of copies of $F$ in an $n$-vertex graph with a proper edge-coloring that contains no rainbow copy of $H$. B. Janzer determined the order of magnitude of $\text{ex}(n,C_s,\text{rainbow-}C_t)$ for all $s\geq 4$ and $t\geq 3$, and a recent result of O. Janzer implied that $\text{ex}(n,C_3,\text{rainbow-}C_{2k})=O(n^{1+1/k})$. We prove the corresponding upper bound for the remaining cases, showing that $\text{ex}(n,C_3,\text{rainbow-}C_{2k+1})=O(n^{1+1/k})$. This matches the known lower bound for $k$ even and is conjectured to be tight for $k$ odd.
Lina Li、Emily Heath、Michelle Delcourt、J¨?zsef Balogh
数学
Lina Li,Emily Heath,Michelle Delcourt,J¨?zsef Balogh.Generalized rainbow Tur\'an numbers of odd cycles[EB/OL].(2020-10-27)[2025-08-02].https://arxiv.org/abs/2010.14609.点此复制
评论