|国家预印本平台
首页|Inverse Design of Metal-Organic Frameworks Using Quantum Natural Language Processing

Inverse Design of Metal-Organic Frameworks Using Quantum Natural Language Processing

Inverse Design of Metal-Organic Frameworks Using Quantum Natural Language Processing

来源:Arxiv_logoArxiv
英文摘要

In this study, we explore the potential of using quantum natural language processing (QNLP) to inverse design metal-organic frameworks (MOFs) with targeted properties. Specifically, by analyzing 450 hypothetical MOF structures consisting of 3 topologies, 10 metal nodes and 15 organic ligands, we categorize these structures into four distinct classes for pore volume and $CO_{2}$ Henry's constant values. We then compare various QNLP models (i.e. the bag-of-words, DisCoCat (Distributional Compositional Categorical), and sequence-based models) to identify the most effective approach to process the MOF dataset. Using a classical simulator provided by the IBM Qiskit, the bag-of-words model is identified to be the optimum model, achieving validation accuracies of 88.6% and 78.0% for binary classification tasks on pore volume and $CO_{2}$ Henry's constant, respectively. Further, we developed multi-class classification models tailored to the probabilistic nature of quantum circuits, with average test accuracies of 92% and 80% across different classes for pore volume and $CO_{2}$ Henry's constant datasets. Finally, the performance of generating MOF with target properties showed accuracies of 93.5% for pore volume and 87% for $CO_{2}$ Henry's constant, respectively. Although our investigation covers only a fraction of the vast MOF search space, it marks a promising first step towards using quantum computing for materials design, offering a new perspective through which to explore the complex landscape of MOFs.

Jihan Kim、Shinyoung Kang

化学计算技术、计算机技术

Jihan Kim,Shinyoung Kang.Inverse Design of Metal-Organic Frameworks Using Quantum Natural Language Processing[EB/OL].(2024-05-20)[2025-08-02].https://arxiv.org/abs/2405.11783.点此复制

评论