支付红利下期权定价模型分组显式差分的并行计算方法
Parallel computation method of group explicit difference for the payment of dividend option pricing model
支付红利下期权定价模型(支付红利下Black-Scholes方程)数值解法的研究具有重要的理论和实际意义。本文给出支付红利下期权定价模型的分组显式(GE)差分方法,在改进的Saul'yev不对称差分格式基础上,构造了支付红利下期权定价模型GE差分格式,进而构造出交替分组显式(AGE)差分格式。理论分析和数值试验表明GE格式是条件稳定的,AGE格式是绝对稳定的。数值试验显示AGE格式大幅度地提高了计算速度,其计算时间约为改进的不对称差分格式的1/2,表明本文给出的AGE有限差分的并行计算方法对求解支付红利下期权定价模型是有效的。
It is very important to study the numerical solution for solving the payment of dividend option pricing model (the payment of dividend Black-Scholes equation) both in theory and practice. This paper gives the group explicit (GE) difference method of the payment of dividend option pricing model, GE difference scheme is constructed based on the improved Saul'yev asymmetric difference scheme, then constructs the alternating group explicit (AGE) difference scheme. Theoretical analysis and numerical experiment demonstrate that GE scheme is conditional stable and AGE scheme is unconditional stable. The numerical experiment shows that AGE scheme can improve the calculation speed rapidly, the calculation time of AGE scheme is 1/2 of the improved Saul'yev asymmetric scheme, which confirms the parallel computation method of AGE finite difference given by this paper can be used to solve the payment of dividend option pricing model effectively.
杨晓忠、郭瑶瑶
数学计算技术、计算机技术财政、金融
金融数学支付红利下期权定价模型分组显式(GE)差分格式交替分组显式(AGE)差分格式并行计算数值试验
financial mathematicspayment of dividend option pricing modelgroup explicit (GE) difference schemealternating group explicit (AGE) difference schemeparallel computingnumerical experiment
杨晓忠,郭瑶瑶.支付红利下期权定价模型分组显式差分的并行计算方法[EB/OL].(2014-12-30)[2025-08-24].http://www.paper.edu.cn/releasepaper/content/201412-976.点此复制
评论