Local Well-Posedness for the Derivative Nonlinear Schr\"odinger Equation in Besov spaces
Local Well-Posedness for the Derivative Nonlinear Schr\"odinger Equation in Besov spaces
It is shown that the cubic derivative nonlinear Schr\"odinger equation is locally well-posed in Besov spaces $B^{s}_{2,\infty}(\mathbb X)$, $s\ge\tfrac12$, where we treat the non-periodic setting $\mathbb X=\mathbb R$ and the periodic setting $\mathbb X=\mathbb T$ simultaneously. The proof is based on the strategy of Herr for initial data in $H^{s}(\mathbb T)$, $s\ge\tfrac12$.
Cai Constantin Cloos
数学物理学
Cai Constantin Cloos.Local Well-Posedness for the Derivative Nonlinear Schr\"odinger Equation in Besov spaces[EB/OL].(2016-11-17)[2025-08-02].https://arxiv.org/abs/1611.05628.点此复制
评论