|国家预印本平台
首页|基于概率PCA模型的字符图像子空间维数确定方法

基于概率PCA模型的字符图像子空间维数确定方法

subspace dimension determination method based on the probabilistic PCA modeling

中文摘要英文摘要

确定特征子空间维数是主分量分析(PCA)算法的核心问题。目前的研究中,多数采用经验式的方法给出子空间维数。通过建立观测数据的概率PCA模型以及相应的模型选择准则,得到了子空间维数确定方法。该方法首先得到主子空间维数的大致范围,然后采用AIC、BIC和CAIC准则进行最优维数确定,最后针对字符图像,给出了三种维数确定方法的比较,并对影响维数判别的各种因素进行了分析。

central issue in PCA is choosing the number of principal components to retain. However, most studies assume a known dimension or determine it heuristically, though there exist a number of model selection criteria in the literature of statistics. In this paper, the probabilistic reformulation of PCA is used and a model selection criterion for determining the true dimensionality of data including Akaike’s information criterion (AIC), the consistent Akaika’s information criterion (CAIC), and the Bayesian inference criterion (BIC) is derived. At last, aimed to the character images, these parameters could affect the determination of the subspace dimension is analyzed in detail.

宋怀波、路长厚、邱化冬

计算技术、计算机技术

主分量分析概率主分量分析模型选择子空间维数

Principal component analysisprobabilistic principal component analysis (PPCA)model selectionsubspace dimension

宋怀波,路长厚,邱化冬.基于概率PCA模型的字符图像子空间维数确定方法[EB/OL].(2009-01-12)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/200901-498.点此复制

评论