|国家预印本平台
首页|基于渐进式稀疏堆叠自动编码器的姿态不变的人脸识别方法

基于渐进式稀疏堆叠自动编码器的姿态不变的人脸识别方法

Sparse SPMAE: An Effective Method for Pose-Invariant Face Recognition

中文摘要英文摘要

姿态不变的人脸识别是非常具有挑战性的问题。一方面,人脸的姿态变化是高度非线性的过程;另一方面,姿态人脸不仅会导致大量人脸信息的丢失,并且训练数据的缺乏会导致模型存在过拟合风险。为解决上述问题,本文提出一种基于渐进式稀疏堆叠自动编码器的姿态人脸识别方法:(1)它通过堆叠多个自动编码器,逆向渐进式地实现姿态的逐步矫正,从而将高度非线性的过程转化为近似线性的过程;(2)本方法在自动编码器中引入稀疏约束,不仅能够学习到人脸中的判别性信息,而且可以减小模型过拟合的风险。本文在三个姿态人脸数据集上均获得了优秀的精度。

Pose-Invariant Face Recognition (PIFR) is a challenging problem since it is difficult to learn geometrically invariant feature representation for large pose face images. On the one hand, the pose variations of faces is a highly non-linear process. On the other hand, pose variations will lead to the loss of a large proportion of discriminative face information. And in the case of insufficient training data, there are risks of over fitting in the complex models. In order to solve these problems, this paper proposes a pose-invariant face recognition method based on sparse multiple auto-encoders, named as Sparse Stacked Progressive Multiple Auto-Encoders (Sparse SPMAE): (1) The non-linear transform process from the pose face images to frontal ones is divided into several nearly linear process. By stacking multiple auto-encoders with adaptive hidden layers, the face normalization is implemented step by step in a reverse and progressive manner. (2) It introduces the sparse constraints in multiple auto-encoders to learn the effectively discriminative information and reduce the potentials of over fitting in the Sparse SPMAE models. As a result, Sparse SPMAE obtains good accuracy on three classic datasets.

范春晓、明悦、王绍颖

计算技术、计算机技术

姿态不变的人脸识别深度学习自动编码器稀疏表示

pose-invariant face recognitiondeep learningauto-encoderssparse representation

范春晓,明悦,王绍颖.基于渐进式稀疏堆叠自动编码器的姿态不变的人脸识别方法[EB/OL].(2020-02-07)[2025-08-18].http://www.paper.edu.cn/releasepaper/content/202002-31.点此复制

评论