自回归过程的参数评估
Parameters estimations for autoregressive process
自回归过程相比其它随机过程具有更好的建模灵活性,并能通过模型的参数设定来模拟其它一些随机过程。本文首先详细地介绍了自回归过程的基本定义其平稳性条件,接着对具有残差的自回归过程的参数估计进行简要探讨以便于具有残差且对称稳定的自回归过程的M-胡伯评估的研究。然后,证明具有残差的自回归过程是 -稳定随机变量,也是平稳过程,在此基础上利用马尔可夫不等式及相关理论来探讨具有残差且对称稳定的自回归过程的M-胡伯评估,最后进一步证明了这种估计的一致性和渐近正态性。
utoregressive process is better than other stochastic processes, which models flexibility, and simulates some other stochastic processes by setting the parameters of model. This paper firstly describes in detail the basic definition of autoregressive process and its stationary conditions, and then studies estimation autoregressive process parameters with residuals briefly in order to research Hubor's М-estimation for autoregressive process with symmetric stable residuals. Secondly, prove autoregressive processes with residuals, which are α -stable random variables, are also stationary processes, and use Markov's inequality and related theories to discuss Hubor's М-estimation for autoregressive process with symmetric stable residuals. Finally, prove the consistency and asymptotic normality of this estimate further.
陈海龙、刘春丽、王钧婷
数学
自回归过程参数估计差分方程平稳条件
utoregressive processParameters estimationsDifference equationStationary process
陈海龙,刘春丽,王钧婷.自回归过程的参数评估[EB/OL].(2014-06-27)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/201406-443.点此复制
评论