On the semigroup of injective monoid endomor\-phisms of the monoid $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ with the two-elements family $\mathscr{F}$ of inductive nonempty subsets of $\omega$
On the semigroup of injective monoid endomor\-phisms of the monoid $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ with the two-elements family $\mathscr{F}$ of inductive nonempty subsets of $\omega$
We study injective endomorphisms of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ with the two-elements family $\mathscr{F}$ of inductive nonempty subsets of $\omega$. We describe the elements of the semigroup $\boldsymbol{End}^1_*(\boldsymbol{B}_{\omega}^{\mathscr{F}})$ of all injective monoid endomorphisms of the monoid $\boldsymbol{B}_{\omega}^{\mathscr{F}}$, and show that Green's relations $\mathscr{R}$, $\mathscr{L}$, $\mathscr{H}$, $\mathscr{D}$, and $\mathscr{J}$ on $\boldsymbol{End}^1_*(\boldsymbol{B}_{\omega}^{\mathscr{F}})$ coincide with the relation of equality.
Oleg Gutik、Inna Pozdniakova
数学
Oleg Gutik,Inna Pozdniakova.On the semigroup of injective monoid endomor\-phisms of the monoid $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ with the two-elements family $\mathscr{F}$ of inductive nonempty subsets of $\omega$[EB/OL].(2023-07-28)[2025-08-02].https://arxiv.org/abs/2307.15481.点此复制
评论