基于快搜索和寻找密度峰值的聚类探究
Probe of Trajectory Clustering by Fast Search and Density Peaks
这个项目主要是探究一种最近提出聚类方法在轨迹聚类上的表现,其主要内容包括使用道格拉斯-普克(Douglas Peucker algorithm)算法简化二维坐标轨迹,通过动态时间规整(Dynamic Time Warping)或弗雷歇距离(Fréchet distance)来计算任意两条轨迹之间的相似度,最后使用一种由意大利学者Alex Rodriguez和Alessandro Laio提出的一种全新的聚类方法:基于快速搜索和寻找密度峰值聚类。探究这种聚类方法对于轨迹聚类的实用性,以及相对于传统聚类方法K最近邻(kNN,k-NearestNeighbor)对于准确度和速度的提升和它的局限性。
rajectory data records the track information of time and space. Nowadays huge amount of trajectory data is collected and researched. By clustering, people could find out similar groups moving objects easily, which is always considered as the first stage for trajectory data mining. Because the data form of trajectory is far from the traditional data type, trajectory clustering always requires massive computing time and space. For most trajectory distance measures, O(nm) complexity are required, where n and m represent the lengths of two trajectories. Moreover, conventional clustering methods, like K-Means, K-Medoids, need iterating until converging, which also take lots of time. This work utilizes Douglas Peucker algorithm to simplify trajectories and computes the Dynamic Time Warping distance, then investigates a new clustering method proposed by Rodriguez and Laio (2014), fast search and find of density peaks, working on the trajectory clustering.
姚磊、刘川意
计算技术、计算机技术
轨迹聚类 道格拉斯-普克算法 动态时间规整
rajectory Clustering Douglas Peucker algorithm Dynamic Time Warping
姚磊,刘川意.基于快搜索和寻找密度峰值的聚类探究[EB/OL].(2017-12-15)[2025-08-24].http://www.paper.edu.cn/releasepaper/content/201712-204.点此复制
评论