|国家预印本平台
首页|Preliminary results of centroiding experiment for the STEP mission

Preliminary results of centroiding experiment for the STEP mission

中文摘要英文摘要

Search for Terrestrial Exo-Planet (STEP)[1] was originally proposed in 2013 by the National Space Science Center, Chinese Academy of Sciences, which is currently being under background engineering study phase in China. The STEP mission is a space astrometry telescope working at visible light wavelengths. The STEP aims at the nearby terrestrial planets detection through micro-arcsecond-level astrometry. Determination of the separation between star images on a detector with high precision is very important for astrometric exoplanets detection through the observation of star wobbles due to planets. The requirement of centroiding accuracy for STEP is 1e-5 pixel. A centroiding experiment have been carried out on a metrology testbed in open laboratory. In this paper, we present the preliminary results of determining the separations between star images. Without calibration of pixel positions and intra-pixel response, we have demonstrated that the standard deviation of differential centroiding is below 7.4e-3 pixel by the algorithm of linear corrected photon weighted means(LCPWM)[2,3]. For comparison, the photon weighted means(PWM) and Gauss fitting are also used in the data reduction. These results pave the way for the geometrical calibration and the intra-pixel quantum efficiency(QE) calibration of detector array equipment for micro-pixel accuracy centroiding.

Search for Terrestrial Exo-Planet (STEP)[1] was originally proposed in 2013 by the National Space Science Center, Chinese Academy of Sciences, which is currently being under background engineering study phase in China. The STEP mission is a space astrometry telescope working at visible light wavelengths. The STEP aims at the nearby terrestrial planets detection through micro-arcsecond-level astrometry. Determination of the separation between star images on a detector with high precision is very important for astrometric exoplanets detection through the observation of star wobbles due to planets. The requirement of centroiding accuracy for STEP is 1e-5 pixel. A centroiding experiment have been carried out on a metrology testbed in open laboratory. In this paper, we present the preliminary results of determining the separations between star images. Without calibration of pixel positions and intra-pixel response, we have demonstrated that the standard deviation of differential centroiding is below 7.4e-3 pixel by the algorithm of linear corrected photon weighted means(LCPWM)[2,3]. For comparison, the photon weighted means(PWM) and Gauss fitting are also used in the data reduction. These results pave the way for the geometrical calibration and the intra-pixel quantum efficiency(QE) calibration of detector array equipment for micro-pixel accuracy centroiding.

Cao, Yang、Chen, Ding、Li, Haitao、Li, Ligang、Li, Baoquan

10.12074/201605.01550V1

天文学航空航天技术

STEPexoplanetscentroidinglinear corrected photon weighted meansGauss fitting

Cao, Yang,Chen, Ding,Li, Haitao,Li, Ligang,Li, Baoquan.Preliminary results of centroiding experiment for the STEP mission[EB/OL].(2016-05-12)[2025-04-26].https://chinaxiv.org/abs/201605.01550.点此复制

评论