|国家预印本平台
首页|基于时序图神经网络和对比学习的会话推荐

基于时序图神经网络和对比学习的会话推荐

Session recommendation based on temporal graph neural networks and contrast learning

中文摘要英文摘要

基于会话的推荐旨在使用匿名用户当前正在进行的会话预测下一个点击的项目。由于用户的信息是未知的,可用的信息是有限的。近年来,由于图神经网络在许多应用中的优异表现,许多工作将图神经网络应用于基于会话的推荐。然而,本文发现将会话数据转换为图结构数据是一种有损图编码方法,这导致会话中项目顺序信息的丢失。另外,基于会话的推荐只能使用一个会话进行推荐。与其他建议相比,数据稀疏问题更加严重。自监督学习可以发现真实样本,在解决数据稀疏问题上有很大潜力。因此,本文提出了一种基于图神经网络和对比学习的基于会话的推荐模型,以解决图编码中的信息丢失和数据稀疏问题。

Session-based recommendations are designed to predict the next click item using an anonymous user\'s current ongoing session. Since the user\'s information is unknown, the information available is limited. In recent years, because of the excellent performance of graph neural network in many applications, many work has applied graph neural network to session based recommendation. However, this paper finds that converting session data into graph-structured data is a lossy graph coding approach, which results in the loss of item-order information in the session. In addition, session-based recommendations can only be recommended using one session. The problem of sparse data is more serious than other suggestions. Self-supervised learning can discover real samples and has great potential to solve the problem of data sparsity. Therefore, this paper proposes a session-based recommendation model based on graph neural network and contrast learning to solve the problem of information loss and data sparsity in graph coding.

王晓茹、李晓龙

计算技术、计算机技术

会话推荐自监督学习对比学习无监督聚类算法

session recommendation1self-supervised learning 2contrast learning 3unsupervised clustering algorithm

王晓茹,李晓龙.基于时序图神经网络和对比学习的会话推荐[EB/OL].(2023-04-23)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/202304-306.点此复制

评论