Isometries and isometric embeddings of Wasserstein spaces over the Heisenberg group
Isometries and isometric embeddings of Wasserstein spaces over the Heisenberg group
Our purpose in this paper is to study isometries and isometric embeddings of the $p$-Wasserstein space $\mathcal{W}_p(\mathbb{H}^n)$ over the Heisenberg group $\mathbb{H}^n$ for all $p>1$ and for all $n\geq 1$. First, we create a link between optimal transport maps in the Euclidean space $\mathbb{R}^{2n}$ and the Heisenberg group $\mathbb{H}^n$. Then we use this link to understand isometric embeddings of $\mathbb{R}$ and $\mathbb{R}_+$ into $\mathcal{W}_p(\mathbb{H}^n)$ for $p>1$. That is, we characterize complete geodesics and geodesic rays in the Wasserstein space. Using these results we determine the metric rank of $\mathcal{W}_p(\mathbb{H}^n)$. Namely, we show that $\mathbb{R}^k$ can be embedded isometrically into $\mathcal{W}_p(\mathbb{H}^n)$ for $p>1$ if and only if $k\leq n$. As a consequence, we conclude that $\mathcal{W}_p(\mathbb{R}^k)$ and $\mathcal{W}_p(\mathbb{H}^k)$ can be embedded isometrically into $\mathcal{W}_p(\mathbb{H}^n)$ if and only if $k\leq n$. In the second part of the paper, we study the isometry group of $\mathcal{W}_p(\mathbb{H}^n)$ for $p>1$. We find that these spaces are all isometrically rigid meaning that for every isometry $Φ:\mathcal{W}_p(\mathbb{H}^n)\to\mathcal{W}_p(\mathbb{H}^n)$ there exists a $Ï:\mathbb{H}^n\to\mathbb{H}^n$ such that $Φ=Ï_{\#}$.
Zoltán M. Balogh、Tamás Titkos、Dániel Virosztek
数学
Zoltán M. Balogh,Tamás Titkos,Dániel Virosztek.Isometries and isometric embeddings of Wasserstein spaces over the Heisenberg group[EB/OL].(2025-07-15)[2025-08-02].https://arxiv.org/abs/2303.15095.点此复制
评论