病理图像分割及评价方法研究
Research on pathological image segmentation and evaluation methods
在医疗诊断中,通过分割病理图像,获取细胞核的形态特征等信息,可以用于癌症评级,还能用来评测治疗效果。细胞核分割的精准度与细胞染色的均匀程度和块状细胞核的形态特征有关。本文研究利用ImageJ图像处理软件提供的阈值分割、区域分割等模型进行核分割,并与U-Net模型分割作对比,结果表明,在公开数据集MoNuSeg上,U-Net型的细胞核分割算法的Acc、F1、MioU等评价指标分别达到91.2%、80.9%、78.5%,细胞核分割性能稳定,U型卷积网络强大的鲁棒性和适应性为肿瘤病理图像分割与分级辅助诊断研究奠定了基础。
In medical diagnosis, information such as the morphological characteristics of the nucleus can be obtained by segmenting pathological images and can be used to grade cancer and evaluate the effect of treatment. The difficulty of nucleus segmentation is related to inhomogeneous cell staining and the morphological characteristics of dense bulk nuclei. In this study, the threshold segmentation and region segmentation models provided by ImageJ image processing software were used for kernel segmentation, and compared with the U-Net model segmentation, the results showed that the evaluation indexes of Acc, F1, MioU and other indicators of the U-Net nucleus segmentation algorithm reached 91.2%, 80.9%, and 78.5%, respectively, and the nucleus segmentation performance was stable, and the robust robustness and adaptability of the U-shaped convolutional network made automatic nuclei segmentation possible.
郭雯瑜、蒲秋梅、沈林林、韦洁瑶
医学研究方法基础医学肿瘤学
细胞核分割病理图像深度学习
Nucleus segmentationPathological imagesDeep learning
郭雯瑜,蒲秋梅,沈林林,韦洁瑶.病理图像分割及评价方法研究[EB/OL].(2023-09-27)[2025-08-18].http://www.paper.edu.cn/releasepaper/content/202309-58.点此复制
评论