一种基于协同过滤及语义相关度的Web服务推荐系统
Web Service Recommendation System Based on Collaborative Filtering and Semantic Relatedness
SOA越来越受到企业及开发人员的青睐,随着日益增长的Web服务,UDDI的检索方式已经不能够满足广大开发人员的需求。开发人员需要一种更加高效的方法能够找到合适的Web服务,从而组合生成复杂的业务逻辑。本文给出了一种Web服务推荐算法,该算法基于协同过滤以及服务的语义相关度。通过服务的语义相关度来降低协同过滤的冷启动问题,通过用户数据规模调整权值以保证推荐服务的准确度。该推荐系统具有较好的推荐效果,能够提高开发者使用Web服务的开发效率。
SOA is playing a more and more important role in software development. The demand for web services is growing so fast that the traditional UDDI which is built for service index can't satisfy developers. Software engineers need a more efficient way to find appropriate web services with which they can build more sophisticated applications. This paper introduces a new web service recommendation algorithm which is based on collaborative filtering and semantic relatedness. Cold start problems can be resolved when applying semantic relatedness into the system. The weights of both algorithms vary according to the user preference data size in order to keep the recommendations fit. The system can give good recommendations and help engineers to use web services efficiently.
赵耀、胡腾飞
计算技术、计算机技术
服务推荐Web服务推荐系统语义相关度协同过滤
Service RecommendationWeb ServiceRecommendation SystemSemantic RelatednessCollaborative Filtering
赵耀,胡腾飞.一种基于协同过滤及语义相关度的Web服务推荐系统[EB/OL].(2012-12-18)[2025-08-24].http://www.paper.edu.cn/releasepaper/content/201212-420.点此复制
评论