|国家预印本平台
首页|Backward bifurcation in SIRS malaria model

Backward bifurcation in SIRS malaria model

Backward bifurcation in SIRS malaria model

来源:Arxiv_logoArxiv
英文摘要

We present a deterministic mathematical model for malaria transmission with waning immunity. The model consists of five non-linear system of differential equations. We used next generation matrix to derive the basic reproduction number $R_0$. The disease free equilibrium was computed and its local stability has been shown by the virtue of the Jacobean matrix. Moreover, using Lyapunov function theory and LaSalle Invariance Principle we have proved that the disease free equilibrium is globally asymptotically stable. Conditions for existence of endemic equilibrium point have been established. A qualitative study based on bifurcation theory reveals that backward bifurcation occur in the model. The stable disease free equilibrium of the model coexists with the stable endemic equilibrium when $R_0<1$. Furthermore, we have shown that bringing the number of disease (malaria) induced death rate below some threshold is sufficient enough to eliminate backward bifurcation in the model.

Miliyon Tilahun

基础医学数学生物科学理论、生物科学方法

Miliyon Tilahun.Backward bifurcation in SIRS malaria model[EB/OL].(2017-07-04)[2025-06-01].https://arxiv.org/abs/1707.00924.点此复制

评论