|国家预印本平台
首页|New congruences for sums involving Apery numbers or central Delannoy numbers

New congruences for sums involving Apery numbers or central Delannoy numbers

New congruences for sums involving Apery numbers or central Delannoy numbers

来源:Arxiv_logoArxiv
英文摘要

The Ap\'ery numbers $A_n$ and central Delannoy numbers $D_n$ are defined by $$A_n=\sum_{k=0}^{n}{n+k\choose 2k}^2{2k\choose k}^2, \quad D_n=\sum_{k=0}^{n}{n+k\choose 2k}{2k\choose k}. $$ Motivated by some recent work of Z.-W. Sun, we prove the following congruences: \sum_{k=0}^{n-1}(2k+1)^{2r+1}A_k &\equiv \sum_{k=0}^{n-1}\varepsilon^k (2k+1)^{2r+1}D_k \equiv 0\pmod n, where $n\geqslant 1$, $r\geqslant 0$, and $\varepsilon=\pm1$. For $r=1$, we further show that \sum_{k=0}^{n-1}(2k+1)^{3}A_k &\equiv 0\pmod{n^3}, \quad \sum_{k=0}^{p-1}(2k+1)^{3}A_k &\equiv p^3 \pmod{2p^6}, where $p>3$ is a prime. The following congruence \sum_{k=0}^{n-1} {n+k\choose k}^2{n-1\choose k}^2 \equiv 0 \pmod{n} plays an important role in our proof.

Jiang Zeng、Victor J. W. Guo

数学

Jiang Zeng,Victor J. W. Guo.New congruences for sums involving Apery numbers or central Delannoy numbers[EB/OL].(2010-08-17)[2025-08-02].https://arxiv.org/abs/1008.2894.点此复制

评论